Centers for Disease Control and Prevention (CDC)

Disease Outbreak, Health Systems, Healthcare Workforce, Infectious Diseases, International Aid, Research, Vaccination

Lessons Learned from Ebola

~Written by Kelly Ann Hanzlik (Contact: kelly_hanzlik@hotmail.com)

According to the World Health Organization, 28,616 people contracted Ebola and 11,310 lives were lost during the Ebola epidemic. After so many lives lost and the hopeful, but understandably tentative countdown of Ebola free days continues once again in West Africa, it is imperative that we take a moment to consider what we learned from the devastating and tragic epidemic.

I spoke with Dr. Ali S. Khan, former senior administrator for the Centers for Disease Control and Prevention, former Assistant Surgeon General, and current Dean of the University Of Nebraska College Of Public Health. He noted initially, that there is always the risk of importation of cases; that is how it started he reminds us. He elaborated further that the epidemic “changed the response from the WHO and caused a change in political focus by the nations involved that will affect future outbreaks and ensure native capabilities, as well as link them to the global response.” He also noted that new medical counter measures, such as vaccines and related therapeutics, were also the result of the Ebola impact. When asked about what we learned, he did not hesitate. “The first thing was a new vaccine that permits a novel prevention strategy using ring vaccination to prevent spread and new cases. The second is the new monoclonals and antivirals for treatment.” He also noted the better understanding of the viral progression and clinical diseases that will influence options for acute treatment and follow up of convalescents.

Ebola has provided us with a virtual plethora of opportunities to learn about the disease, its treatment and control, as well as the control of other infectious illnesses through our attempts to prevent its spread as well as through our failures, and successes. We gained valuable treatment modalities and tactics that will likely be used in future outbreaks of Ebola, as well as many other infectious diseases.

Ebola taught us other things too. It has been some time since global health has taken center stage. Ebola changed that. During the epidemic, one could not watch the news or go through a day without hearing an update on the latest development in the Ebola crisis. Although other infectious diseases like Plague, Polio, AIDS, SARS, H1N1, Cholera, and now Zika have captured the world’s attention, few diseases have made such an intense impact, nor caused the uproar and fervor that Ebola elicited. Ebola reminded us that global health is public health and affects us all, and as such, deserves to be a priority for national and international focus and funding for everything from vaccine development and research, to capacity for response locally, nationally, and internationally. Global health has teetered on the edge of public awareness, and remained a quiet player in the competition of priorities in national budgets. Today, it is abundantly clear how vital this sector is to each nation’s, as well as the world’s health, safety, success and even its survival.

Another effect from the Ebola crisis was the opportunity to educate people about public health and the transmission of infectious disease. Through education, public health officials were able to promote behaviors that ensured the safety and health of the public. It is stunning that in this day and age, we persist in so many behaviors that put us and those we interact with at risk. The discrepancy in what we say we will do, and what we are actually willing to commit to and take action on, looms large. Persisting low vaccination rates and the prevalence of infectious diseases such as sexually transmitted diseases, measles, pertussis and influenza show this. Ebola offers yet another opportunity to demonstrate the connection between our behaviors and our risks and disease.

Ebola also showed us that many nations continue to lack sufficient financing, infrastructure, facilities, support and medical staff to treat their own populations. Endemic conditions like malaria, and neglected tropical diseases like Guinea worm disease, Yaws, Leishmaniasis, Filariasis, and Helminths, as well as other conditions continue to affect millions globally.  Maternal and childhood morbidity and mortality rates remain deplorable as well. And millions of children around the world continue to suffer and die of malnutrition and disease before they reach the age of five. This is unacceptable, especially because proper treatment and cures for these conditions exist. Ebola also highlighted the need for treatments for chronic non-infectious conditions as well.

Moreover, Ebola clearly demonstrated the enormous need that remains for sufficiently trained medical professionals and healthcare staff to provide adequate care for many populations throughout the world. The loss of so many extraordinary and heroic staff that dedicated their lives to helping others in need under the most daunting and challenging of circumstances was devastating to those whom they served, and must not be in vain.


Additionally, Ebola provided us with yet another chance to relearn lessons about the role of safety in giving aid to others in need. We learned that we cannot just rush in with aid, but must recall the basics that every first responder and medical student must learn:  Ensure scene safety before giving care, and first do no harm. Ebola showed us the necessity to strategize and prepare to give care by utilizing personal protective equipment. It also reminded us very quickly that we could indeed do harm, and worsen the epidemic when we acted without first assessing the situation and ensuring proper protection and preparation.

So, it remains to be seen just how much we will learn from Ebola. Will we learn from our mistakes? Will we take the global view in the future, or the narrow one? Will we truly live by the motto of the Three Musketeers and be "one for all and all for one", or persist in "it's all about me"? Only time will tell. 

Disease Outbreak, Health Systems, Infectious Diseases, Innovation, mHealth, Research

Technology is Changing the Way Infectious Diseases are Tracked

~Written by Theresa Majeski (Contact: theresa.majeski@gmail.com; Twitter: @theresamajeski)

Technology is progressively becoming a bigger part of our lives. This holds true in high-income countries and in low- and middle-income countries. By 2012, three quarters of the world’s population had gained access to mobile phones, pushing mobile communications to a new level. Of the over 6 billion mobile subscriptions in use worldwide in 2012, 5 billion of them were in developing countries. The Pew Research Center’s Spring 2014 Global Attitudes survey indicated that 84% of people owned a mobile phone in the 32 emerging and developing nations polled. Internet access is also increasing in low- and middle-income countries. The 2014 Pew Research Center survey indicated that the Internet was at least occasionally used by a median of 44% of people living in the polled countries.

The increase in Internet and mobile phone access has significant implications for how infectious diseases can be better tracked around the world. Although robust and validated traditional methods of data collection rely on established sources like governments, hospitals, environmental, or census data and thus suffer from limitations such as latency, high cost and financial barriers to care. An example of a traditional infectious disease data collection method is the US Centers for Disease Control and Prevention’s (CDC) influenza-like illness (ILI) surveillance system. This system has been the primary method of measuring national influenza activity for decades but suffers from limitations such as differences in laboratory practices, and patient populations seen by different providers, making straightforward comparisons between regions challenging. On an international scale, the WHO receives infectious disease reports from its technical institutions and organizations. However, these data are limited to areas within the WHO’s reach and may not capture outbreaks until they reach a large enough scale.

Figure 1. CDC Flu View Interactive dashboard: http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Compared to traditional global infectious diseases data collection methods, crowdsourcing data allows researchers to gather data in near real-time, as individuals are diagnosed or even before diagnosis in some instances. Furthermore, getting individuals involved in infectious disease reporting helps people become more aware of and involved in their own health. Crowdsourcing infectious disease data provides previously hard to gather information about disease dynamics such as contact patterns and the impact of the social environment. Crowd-sourced data does have some limitations, including data validation and low specificity.

Internet-based applications have resulted in new crowd-sourced infectious disease tracking websites. One example is HealthMap. HealthMap is a freely available website (and mobile app) developed by Boston Children’s Hospital which brings together informal online sources of infectious disease monitoring and surveillance. HealthMap crowd-sources data from libraries, governments, international travelers, online news aggregators, eyewitness reports, expert-curated discussions, and validated official reports to generate a comprehensive worldwide view of global infectious diseases. With HealthMap you can get a worldwide view of what is happening and also sort by twelve disease categories to see what is happening within your local area. 

Figure 2. HealthMap. http://www.healthmap.org/en/

Another crowd-sourced infectious disease tracking platform was Google’s Flu Trends, and also their Dengue Trends. Google was using search pattern data to estimate incidence of influenza and dengue in various parts of the world. Google’s Flu Trends was designed to be a syndromic influenza surveillance system acting complementary to established methods, such as CDC’s surveillance. Google shut down Flu Trends after 2014 due to various concerns about the validity of the data. As an initial venture into using big data to predict infectious diseases, Flu (and Dengue) Trends have provided information that researchers can use to improve future big data efforts. 

With the increase of mobile phone access around the world, organizations have started using short message service (SMS), also known as text messaging, as a method of infectious disease reporting and surveillance. Text messaging can be used for infectious disease reporting and surveillance in emergency situations where regular communication channels may have been disrupted. After a 2009 earthquake in Sichuan province, China, regular public health communication channels were damaged. The Chinese Center for Disease Control and Prevention distributed solar powered mobile phones to local health-care agencies in affected areas. The phones were pre-loaded with necessary software and one week after delivery, the number of reports being filed returned to pre-earthquake levels. Mobile phone reporting accounted for as much as 52.9% of total cases reported in the affected areas during about a two-month time period after the earthquake. 

Text message infectious disease reporting and surveillance is also useful in non-emergency settings. In many malaria-endemic areas of Africa, health system infrastructure is poor which results in a communication gap between health services managers, health care workers, and patients. With the rapid expansion and affordability of mobile phone services, using text-messaging systems can improve malaria control. Text messages containing surveillance information, supply tracking information and information on patients’ proper use of antimalarial medications can be sent from malaria control managers out in the field to health system managers. Text messaging can also be sent by health workers to patients to remind them of medication adherence and for post-treatment review. Many text message based interventions exist, but there is a current lack of peer-reviewed studies to determine the true efficacy of text message based intervention programs.

Increasing global access to the Internet and mobile phones is changing the way infectious diseases are reported and how surveillance is conducted. Moving towards crowd-sourced infectious disease reporting allows for a wider geographical reach to underserved populations that may encounter outbreaks, which go undetected for a delayed period. While crowdsourcing such data does have limitations, more companies than ever are working on using big data and crowd-sourced data in a reliable way to inform the world about the presence of infectious diseases.

Disease Outbreak, Economic Burden, Government Policy, Healthcare Workforce, Health Systems, Infectious Diseases

Lessons, Impact, and the 'Fearonomics' of the Ebola Outbreak in Nigeria

~Written by Sulzhan Bali, PhD (Contact: sulzhan.bali@twigh.org

Also published on the DGHI Diaries From the Field Blog

Passport Sticker with Ebola Symptoms and National Helpline. Photo Credit: Sulzhan Bali, PhD

24th of July.

The day Macchu Picchu was discovered in 1911.

The day Apollo XI returned to the Earth after the first successful mission of taking humans to the moon in 1969. 

Yet, in Nigeria, that day in 2014 will always be marked as the day Patrick Sawyer—the index patient of Ebola—died and set an outbreak in motion in one of the most populated cities in Africa. Patrick Sawyer was a Liberian-American citizen and a diplomat who violated his Ebola quarantine to travel to Nigeria for an ECOWAS convention. His collapse at the airport, coupled with an ongoing strike by Nigerian doctors in public hospitals, landed him at a private hospital in Obalende, where he infected eight other people. 

Patrick Sawyer’s death marked the beginning of an Ebola epidemic in Lagos, a city of 21 million. Lagos is a major economic hub in Africa and one of its biggest cities. An uncontrolled Ebola epidemic would have a far-reaching economic impact beyond the borders of the city, its country, and even its continent.

A recent study has shown that Ebola virus remains active in a dead body for more than a week. Add to this that the body is most infectious in the hours before death, and it is a "virus bomb" waiting to happen if handled incorrectly. West Africa, especially Nigeria, has a strong funeral culture. This Ebola-infected Liberian diplomat’s body was transported and incinerated in accordance with the WHO and CDC protocol. This feat was achieved despite immense political and diplomatic pressure to return the body for funeral rites. It represents one of the many cases of collaboration and "clinical system governance" that are at the heart of the successful containment of Ebola in Nigeria. It is one of the many stories that I'm hoping to highlight in my research on the role of the private sector in Nigeria’s successful Ebola containment.

One of Many Ebola Information Posters Around Lagos. Photo Credit: Sulzhan Bali, PhD

As part of my research, I am looking at 10 different economic sectors to understand how the Ebola outbreak impacted the private sector and how the private sector dealt with the challenges that the Ebola outbreak posed. My hope is that this research will lead to lessons for the private sector on how, in times of an epidemic, they can help the government to mitigate the disease’s economic impact. I also hope that the resulting report will help governments engage with the private sector more effectively in times of emergencies.

With many outbreaks, especially of highly fatal diseases such as Ebola, fear is the biggest demon. This fear has led to the crippling of economies of Ebola-affected countries. This fear has cost Sierra Leone, Guinea, and Liberia 12 % of their GDP in foregone income and unraveled the years of progress made by these countries. However, this fear is not just a phenomenon limited to West Africa. I had a very personal encounter with this fear recently, when I was quarantined for a few hours in the United States (despite Nigeria being declared Ebola free since October 2014). 

It has been a humbling experience so far, as I try to understand how this fear and the hysteria around Ebola can lead to significant behavioral changes—some of them necessary but some extreme. Everyone I speak to has a story to share. Some people tell of how they bought more than two bus tickets to prevent sitting next to other people. Others tell of hospitals resembling "ghost buildings" as people avoided hospitals and doctors like the plague. Many tell of the "Ebola elbow-shake" that replaced the usual handshake or hug. The reality is that although the Ebola outbreak infected 21 people in Nigeria, it actually affected the lives of 21 million people in Lagos alone, in one way or another. I have come to realize that there is a thin line between precaution and hysteria. Maintaining the equilibrium between the two is the key to controlling the disease and mitigating its economic impact.

As I wrap up my interviews, a few questions resonate with me time and time again from these sessions.

“Are we prepared for the next time?” 

“Ebola is back in Liberia. What can we do to prevent Ebola from coming back to Nigeria?” 

 For the doctors who died in Nigeria’s fight against Ebola:

“Can we truly say our country is a safer place after their sacrifice?” 

And for myself:

“How will your report help Nigeria?”

These are the questions that keep me going. Although my report may not be able to answer all of the aforementioned questions, I do hope it will at least get policy makers, students, and advocacy groups talking about how countries can be better prepared for the next big outbreak and how public-private collaboration can lead a country out of an epidemic and on a path of recovery.

To end on a positive note, 24th July, 2015 also marked one year since the last polio case in Nigeria—an achievement that clearly shows what collaboration in global health can achieve.

(To learn more about my research or to contribute/collaborate in my study, please contact me.)

Government Policy, Health Systems, Infectious Diseases, International Aid

Program Science: Improving Public Health Interventions

~Written by Theresa Majeski (Contact: theresa.majeski@gmail.com

Program science is a relatively new term being used to describe the application of scientific knowledge to improve the design, implementation, and evaluation of programs. Evidence-based interventions are becoming more mainstream in public health but there is still work to do to ensure that public health concepts work the way we hope they will. That’s where program science can help.

Program science extends beyond looking at the implementation of a program, which is the logistics of developing and implementing evidence-based interventions, and focuses on the bigger picture. Program science looks at entire programs, which may include more than one intervention, for a particular population in a specific context. For example, program science may look at efforts to decrease HIV rates in youth of color in a specific borough of NYC. There are probably many interventions working on this issue, targeting different populations of youth via different methods. Program science would look at how all of these interventions work together to achieve the overarching goal of decreasing HIV rates in youth of color in that specific borough of NYC.

Program science focuses on questions like, "Who should be targeted and for how long?," "What is the best combination of interventions to achieve our goal?." " How can we sustain the program?," and "What quality improvement processes exist?" Program science helps to bring together researchers, policy makers, program planners, frontline workers, and communities for an ongoing engagement to help the program succeed.

Source: Sevgi O. Aral, 2012. Program Science: A New Initiative; A New Approach to STD Prevention Programs. 2012 National STD Prevention Conference

Program science is popular in HIV/STI work right now because such work involves long-term complex population-level behavioral interventions. For HIV/STI work, program science can be especially useful in determining why some interventions aren’t as effective as they were in the past and why some disease incidence rates are leveling out (or increasing) instead of continuing to decrease.

The Centers for Disease Control and Prevention (CDC) focused on program science at their 2012 National STD Conference. In the US, HIV/STI program science can be used to strengthen public health initiatives in a time when public health funding is decreasing and funders want to see substantial impact. Program science can ensure that money is allocated to the most effective interventions that will have the greatest impact on the population.  HIV related program science can be useful on a global scale to ensure that we fully understand the epidemic, who is impacted, and to ensure that the “money follows the epidemic and the interventions follow the evidence”.  Because each HIV affected population of the world has different characteristics it is important to not just apply one intervention to everyone but to really understand how each population is affected and what interventions would work best for each population.  

Program science is a logical progression from a focus on developing evidence-based interventions and rolling them out to a target population, to a more comprehensive focus on how various interventions are impacting the target population. this progression into a "big picture" way of looking at things will hopefully create more effective and efficient programs that contain targeted interventions to increase health of the target population. As program science continues to gain traction in public health, I believe we will see a shift to "big picture" thinking for all sorts of public health activities currently operating without this broad focus.